Abstract
Abstract Through a Weather Research and Forecasting model (WRF)-based ensemble Kalman filter (EnKF) data assimilation system, the impact of assimilating airborne radar observations for the convection-permitting analysis and prediction of Hurricane Katrina (2005) is examined in this study. A forecast initialized from EnKF analyses of airborne radar observations had substantially smaller hurricane track forecast errors than NOAA’s operational forecasts and a control forecast initialized from NCEP analysis data for lead times up to 120 h. Verifications against independent in situ and remotely sensed observations show that EnKF analyses successfully depict the inner-core structure of the hurricane vortex in terms of both dynamic (wind) and thermodynamic (temperature and moisture) fields. In addition to the improved analyses and deterministic forecast, an ensemble of forecasts initiated from the EnKF analyses also provided forecast uncertainty estimates for the hurricane track and intensity. Also documented here are the details of a series of data thinning and quality control procedures that were developed to generate superobservations from large volumes of airborne radial velocity measurements. These procedures have since been implemented operationally on the NOAA hurricane reconnaissance aircraft that allows for more efficient real-time transmission of airborne radar observations to the ground.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.