Abstract

Background/Aims: The organic anion transporting polypeptide (OATP) of human liver mediates the basolateral hepatocellular uptake of numerous cholephilic anions and steroidal compounds. The aim of this study was to clone the human OATP gene and to map its chromosomal localization by fluorescence in situ hybridization. Methods: A polymerase chain reaction-amplified fragment of the human OATP gene was used to isolate a genomic OATP clone from a P1-derived artificial chromosome human genomic library. Human metaphase chromosomes were hybridized with digoxigenin-labeled DNA from the genomic OATP clone and incubated in fluoresceinated antidigoxigenin antibodies for in situ detection of specific hybridization signals. Results: Sequence analysis revealed that the isolated P1-derived artificial chromosome clone contained a large portion of the human OATP gene. Fluorescence in situ hybridization of human chromosomes with the genomic OATP clone resulted in the specific labeling of the OATP gene on the short arm of chromosome 12 at band 12p12. Conclusions: Mapping of a genomic OATP clone to chromosome 12p12 represents a first step towards the molecular characterization of the human OATP gene. While no liver disease has so far been associated with cytogenetic abnormalities of the short arm of chromosome 12, the genomic OATP sequence provides the basis for studies on gene structure and on the tissue-specific regulation of OATP gene expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.