Abstract

GIAO NMR chemical shifts have been calculated for a set of 28 pairs of diastereoisomers in order to test the ability of NMR shift calculation to distinguish between diastereomeric structures. We compare the performance of several different parameters for quantifying the agreement between calculated and experimental shifts from the point of view of assigning structures and introduce a new parameter, CP3, based on comparing differences in calculated shift with differences in experimental shift, which is significantly more successful at making correct structure assignments with high confidence than are the currently used parameters of the mean absolute error and the correlation coefficient. Using our new parameter in conjunction with Bayes' theorem, stereostructure assignments can be made with quantifiable confidence using shifts obtained in single point calculations on molecular mechanics geometries without computationally expensive ab initio geometry optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.