Abstract

The purpose of the paper is to introduce, in a discrete-time no-arbitrage pricing context, a bridge between the historical and the risk-neutral state vector dynamics which is wider than the one implied by a classical exponential-affine stochastic discount factor (SDF) and to preserve, at the same time, the tractability and flexibility of the associated asset pricing model. This goal is achieved by introducing the notion of Exponential-Quadratic SDF or, equivalently, the notion of Second-Order Esscher Transform. The log-pricing kernel is specified as a quadratic function of the factor and the associated sources of risk are priced by means of possibly non-linear stochastic first-order and second-order risk-correction coefficients. Focusing on security market models, this approach is developed in the multivariate conditionally Gaussian framework and its usefulness is testified by the specification and calibration of what we name the Second-Order GARCH Option Pricing Model. The associated European Call option pricing formula generates a rich family of implied volatility smiles and skews able to match the typically observed ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.