Abstract

We study consumption-portfolio and asset pricing frameworks with recursive preferences and unspanned risk. We show that in both cases, portfolio choice and asset pricing, the value function of the investor/representative agent can be characterized by a specific semilinear partial differential equation. To date, the solution to this equation has mostly been approximated by Campbell-Shiller techniques, without addressing general issues of existence and uniqueness. We develop a novel approach that rigorously constructs the solution by a fixed point argument. We prove that under regularity conditions a solution exists and establish a fast and accurate numerical method to solve consumption-portfolio and asset pricing problems with recursive preferences and unspanned risk. Our setting is not restricted to affine asset price dynamics. Numerical examples illustrate our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call