Abstract
A possible data source for the estimation of asset correlations is default time series. This study investigates the systematic error that is made if the exposure pool underlying a default time series is assumed to be homogeneous when in reality it is not. We find that the asset correlation will always be underestimated if homogeneity with respect to the probability of default (PD) is wrongly assumed, and the error is the larger the more spread out the PD is within the exposure pool. If the exposure pool is inhomogeneous with respect to the asset correlation itself then the error may be going in both directions, but for most PD- and asset correlation ranges relevant in practice the asset correlation is systematically underestimated. Both effects stack up and the error tends to become even larger if in addition a negative correlation between asset correlation and PD is assumed, which is plausible in many circumstances and consistent with the Basel RWA formula. It is argued that the generic inhomogeneity effect described is one of the reasons why asset correlations measured from default data tend to be lower than asset correlations derived from asset value data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.