Abstract

The main aim of this paper is to assess the impact of climate change on variations and trends of the net radiation flux over West Africa during night and day time. West Africa was sub-divided into six climatic zones as classified by the World Meteorological Organization such as Hyper-Arid (HAR), Arid (ARD), Semi-Arid (SAR), Semi-Humid Dry (SHD), Semi-Humid Humid (SHH) and Humid (HUM) zones. To achieve this aim, thirty-six years' surface data of shortwave and longwave radiations between 1980 and 2015 were obtained from the Archives of the Modern-Era Retrospective Analysis for Research and Application, Version 2 (MERRA-2) database. Analyses showed that the maximum values of net radiative fluxes during the nighttime and daytime have the magnitude in watt per square metres of −70.00 and 225.82 in HAR zone, −62.46 and 248.99 in ARD zone, −51.71 and 304.88 in SAR zone, −40.55 and 334.58 in SHD zone, −34.32 and 352.62 in SHH zone and −30.49 and 362.68 in HUM zone respectively. The effect of population density, emission of greenhouse gas and surface albedo on net radiation was investigated over the climatic zones using the multivariate linear regression analysis. The results of the regression analysis showed that they have significant effects on net radiation. Also, the monotonic trend analysis between 1980 and 2015 was carried out using the non-parametric Mann- Kendall statistical test. The results of the trend test revealed that net radiation showed decreasing trends mainly in the humid zones at over 95% significance level while population density, emission of greenhouse gas and surface albedo showed significant increasing trends at the 99.9% level of significance. The analyses showed that the humid zones have higher values of net radiation, radiative cloud forcing, carbon-dioxide emission, population density and lower surface albedo than arid zones. Therefore, as signatures of climate change, it can be concluded that increase in population density, cloud amount and anthropogenic activities such as land use/land cover and emission of greenhouse gas have contributed greatly to the significant decreasing trends of the radiative flux balance especially in the humid zones of West Africa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call