Abstract

Transgenic zebrafish are a common vertebrate model system for the study of addictive behavior. In the present study, plasmid constructs containing green fluorescent protein (GFP) and the promoter of tyrosine hydroxylase (TH), a key synthetic enzyme for catecholamines, were produced. The TH-GFP constructs were microinjected into zebrafish embryonic cells. Three days post-fertilization, GFP began expressing in distinct catecholaminergic areas. The TH-GFP transgenic zebrafish were employed as live biosensors to test the effects of the commonly abused drugs nicotine and ketamine. First, locomotion assays were used to study the general excitatory effects of the drugs. Maximal locomotor activity was obtained after treatment with a high concentration of nicotine (10μM), but with a much lower concentration of ketamine (0.1μM). Second, TH protein levels in zebrafish brains were assessed by Western blot. TH protein levels were significantly increased, with maximal protein levels found after treatment with the same drug concentrations that gave maximal locomotor activity. Importantly, analysis of GFP in the zebrafish catecholaminergic areas revealed the same expression patterns as was obtained by Western blot. The present results indicate that increased locomotor activity can be correlated to TH protein expression, as indicated by Western blot and expression of TH-GFP. We have shown that TH-GFP expression is a reliable method to show the effects of drugs on TH expression that may be employed as a novel high-throughput live biosensor for screening drugs ofabuse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.