Abstract

Simple SummaryThis study reported the ecological risks and human health risk assessments of five potentially toxic metals in the topsoils of six land uses in Peninsular Malaysia. It was found that industry, landfill, rubbish heap, and mining areas were categorized as “very high ecological risk”. The land uses of industry, landfill and rubbish heap were found to have higher hazard quotient values for the three pathways of the five metals for children and adults, when compared to the mining, plantation, and residential areas. The values for both the non-carcinogenic (Cd, Cu, Ni, and Zn), and carcinogenic risks for inhalation (Cd and Ni) obtained for children and adults in this study showed no harmful health effects on their health. However, of public concern, the hazard index, for Pb of children at the landfill and the rubbish heap showed non-carcinogenic risk for children. Therefore, children need to be taken care from public standpoint. They should be advised not to play in the topsoils near industry, landfill and rubbish heap areas. The present findings are important for the environmental management of potentially toxic metals especially in the land uses of industry, landfill and rubbish heap in Peninsular Malaysia.Human activities due to different land uses are being studied widely in many countries. This study aimed to determine the ecological risks and human health risk assessments (HHRA) of Cd, Pb, Ni, Cu, and Zn in the topsoils of six land uses in Peninsular Malaysia. The ranges of the potentially toxic metals (PTMs) in the soils (mg/kg, dry weight) of this study were 0.24–12.43 for Cd (mean: 1.94), 4.66–2363 for Cu (mean: 228), 2576–116,344 for Fe (mean: 32,618), 2.38–75.67 for Ni (mean: 16.04), 7.22–969 for Pb (mean: 115) and 11.03–3820 for Zn (mean: 512). For the ecological risk assessments, the potential ecological risk index (PERI) for single metals indicated that the severity of pollution of the five metals decreased in the following sequence: Cd > Cu > Pb > Zn > Ni. It was found that industry, landfill, rubbish heap, and mining areas were categorized as “very high ecological risk”. For HHRA, the land uses of industry, landfill and rubbish heap were found to have higher hazard quotient (HQ) values for the three pathways (with the order: ingestion > dermal contact > inhalation ingestion) of the five metals for children and adults, when compared to the mining, plantation, and residential areas. The values for both the non-carcinogenic (Cd, Cu, Ni, and Zn), and carcinogenic risks (CR) for inhalation (Cd and Ni) obtained for children and adults in this study showed no serious adverse health impacts on their health. However, of public concern, the hazard index (HI), for Pb of children at the landfill (L-3) and the rubbish heap (RH-3) sites exceeded 1.0, indicating non-carcinogenic risk (NCR) for children. Therefore, these PERI and HHRA results provided fundamental data for PTMs pollution mitigation and environmental management in areas of different land uses in Peninsular Malaysia.

Highlights

  • Human activities due to different land uses such as landfills, vehicles, mining, industries, residential, agricultural plantations, and city garbage disposal are usually related to soil-heavy metal pollutions [1,2,3]

  • When we investigated the land uses, the values of Pollution Load Index (PLI) and potential ecological risk index (PERI) were dominated by mining, rubbish heap, landfill, and industry

  • The present findings indicated that the land uses of soils in Peninsular Malaysia had affected the accumulation of heavy metals in soils, which could endanger ecological safety and human health [46,51]

Read more

Summary

Introduction

Human activities due to different land uses such as landfills, vehicles, mining, industries, residential, agricultural plantations, and city garbage disposal are usually related to soil-heavy metal pollutions [1,2,3]. All these activities can contribute to the anthropogenic heavy metal pollution in urban areas [4,5,6,7]. The pollution of environments by heavy metals is a global issue, as rapid industrialization worldwide has significantly contributed to the release of theoretically potentially toxic metals (PTMs) into soils and water [8,9]. Limited studies have focused on terrestrial pollution in Malaysia

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call