Abstract

Purpose This research is associated with the real-time parameters of wide- and narrow-body aircraft to recognize the quantitative relationship framework. This paper aims to find the superiority of aircraft design technology which triggers the reduction in specific fuel consumption (SFC) and economic competitiveness. Design/methodology/approach The real case study is performed with 22 middle-of-the-market (MoM) aircraft. This paper develops a fuel burn mathematical model for mid-size transport aircraft by a multi-linear regression approach. In addition, sensitivity analysis is performed to establish the authentication of the fuel burn model. Findings The study reveals that the MoM aircraft would be the future aircraft design in terms of better fuel economy and carbon footprint. From the multi-regression analysis, it is observed that the logarithmic regression model is the best fit for estimating the SFC. Moreover, fineness ratio, aspect ratio, gross weight, payload weight fraction, empty weight fraction), fuel weight fraction, payload, wing loading, thrust loading, range, take-off distance, cruise speed and rate of climb are observed as the suitable parameters which provide the best fitness value as 0.9804. Originality/value Several existing literature reveals that a few research has been performed on the MoM aircraft with wide-body configuration. Moreover, mathematical modelling on the fuel consumption was insignificantly found. This study examines several parameters which affect the fuel consumption of a wide-body aircraft. A real-case study for design configurations, propulsive systems, performance characteristics and structural integrity parameters of 22 different MoM aircraft are performed. Moreover, multi-regression modelling is developed to establish the relation between SFC and other critical parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.