Abstract

The supercritical carbon dioxide Brayton cycle is one of the alternative thermal schemes for advanced energy systems. In this study, ammonia absorption Refrigeration-reheat supercritical carbon dioxide Brayton combined cycle is constructed, and the thermodynamic performance of reheat supercritical carbon dioxide Brayton cycle with ammonia absorption refrigeration cycle are analyzed. The characteristics of Brayton cycle and ammonia absorption refrigeration cycle configuring with Printed Circuit Heat Exchanger are analyzed. The result shows that under controlled freezing-point storage condition, optimized combined cycle energy and exergy efficiency is 46% and 64.98%, electricity output and refrigeration capacity is 11.4 MW and 1.78 MW. Under air-conditioning refrigeration condition, optimized combined cycle energy and exergy efficiency is 50.28% and 65.04%, and electricity output and refrigeration capacity is 11.4 MW and 3 MW. Compared with combined cycle performance before optimization, average improvement of cycle energy efficiency, exergy efficiency and exergy destruction is 4.19%, 0.73% and 3.64%, which shows obvious improvement of cycle performance after optimization. Comparative analysis of printed circuit heat exchanger applied at recuperator and subcooler shows that heat transfer performance of single-faced etched printed circuit heat exchanger in straight channel is better than that of double-faced etched printed circuit heat exchanger for same heat transfer and pressure drop.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.