Abstract

Stabilization of soil contaminated with trace elements is a remediation practice that does not reduce the total content of contaminants, but lowers the amounts of mobile and bioavailable fractions. This study evaluated the efficiency of Fe0 to reduce the mobility and bioavailability of Cr, Cu, As and Zn in a chromated copper arsenate (CCA)-contaminated soil using chemical, biochemical and biotoxicity tests. Contaminated soil was stabilized with 1% iron grit. This treatment decreased As and Cr concentrations in leachates (by 98% and 45%, respectively), in soil pore water (by 99% and 94%, respectively) and in plant shoots (by 84% and 95%, respectively). The stabilization technique also restored most of analyzed soil enzyme activities and reduced microbial toxicity, as evaluated by the BioTox™ test. After stabilization, exchangeable and bioaccessible fractions of Cu remained high, causing some residual toxicity in the treated soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call