Abstract

Water and nitrogen (N) management is a key factor in starch potato (Solanum tuberosum L.) production to ensure good yield and quality. Due to its shallow root system, potato is sensitive to drought and N uptake is limited to the upper soil layer resulting in leaching of nitrate. Efficient utilization of N and water can be optimized by adaptation of the cropping system and by selection of improved genotypes. A 2-year pot experiment with 14 modern starch and 3 table potato cultivars was conducted under controlled conditions in a rain-out shelter in order to investigate genotype-dependent responses to N deficiency and drought stress with regard to yield and yield components. Plants were grown at two N levels and a short-term drought-stress period during the sensitive tuber initiation stage was applied. Starch yield under control condition reached an average of 80.2 g plant−1, which was reduced under drought stress by 18% at sufficient N supply and by 23% at N deficiency. Sufficient N fertilization improved the water use efficiency under both continuous water supply and drought stress. N limitation increased the N use efficiency (NUE) at continuous watering, while NUE was not affected by drought stress at sufficient N supply but decreased under N deficiency. Genotype and drought as well as genotype and N level interactions were significant for all investigated traits, i.e. tuber yield (fresh and dry matter), starch and NKjeldahl contents, starch yield and water consumption.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call