Abstract

Jia, D.-Y., Dai, X.-L., Men, H.-W. and He, M.-R. 2014. Assessment of winter wheat (Triticum aestivum L.) grown under alternate furrow irrigation in northern China: Grain yield and water use efficiency. Can. J. Plant Sci. 94: 349–359. Increasing water use efficiency (WUE) can improve agricultural production in the north of China, where there is little or no prospect for the expansion of water resources. A field experiment was carried out to investigate the effects of alternate furrow irrigation (AFI) on the physiological response, grain yield, and WUE of winter wheat (Triticum aestivum L.) over two successive growing seasons (2009/2010 and 2010/2011). The irrigation regimes were: W0, non-irrigated; W2, every furrow was irrigated at jointing and anthesis; W3, every furrow was irrigated before wintering and at jointing and grain filling; and AFI, where one of the two neighboring furrows was alternately irrigated before wintering and at grain filling, and every furrow was irrigated during jointing. Our results indicate that the rate of plant transpiration and soil evaporation during grain filling were lower with AFI than when using W3. A reduced biological yield and increased harvest index were achieved under AFI compared with treatment W3. No difference in grain yield was observed between AFI and W3. The photosynthetic WUE, irrigation WUE, and WUE were all higher with AFI than with W3. Therefore, AFI is suggested as an appropriate irrigation schedule that achieves acceptable grain yields and allows for reductions in irrigation water consumption.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.