Abstract

The objective of this study was to examine the use of the continuous wavelet transform (CWT) on surface electromyographic (sEMG) signals acquired from the lower extremity muscles during gait in children with typical development (TD) and cerebral palsy (CP). This was done to explore the possibility of developing a quantitative assessment scale of motor function based on time–frequency information. An initial study was conducted on retrospective gait data from three children, matched in gender and in anthropometric variables but with differing levels of walking ability. EMG data were extracted from five lower extremity muscles to assess the degrees of differentiation. The data were processed using the CWT to derive an average scalogram, from which the instantaneous mean frequency (IMNF) was calculated. Principal component analysis was used to assess the differences between the curves. Preliminary results indicated that for select lower extremity muscles, there was a significant deviation in the IMNF curves in the child with CP as compared to the child with TD. Furthermore, as motor impairment increased, total percent explained variance to the TD curves decreased. This suggests that it might be possible to derive a physiologically based quantitative index for assessing motor function and for assessing clinical treatments in CP using the wavelet analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call