Abstract
The purpose of this study is to evaluate Gharanghu multi-purpose reservoir system (East Azerbaijan, Iran) using efficiency indexes (EIs) affected by climate change. At first, the effects of climate change on inflow to the reservoir, as well as changes in the demand volume over a time interval of 30 years (2040–2069) are reviewed. Simulation results show that inflow to the reservoir is decreased in climate change interval compared to the baseline interval (1971–2000), so that comparison of long-term average monthly inflow to the reservoir in climate change interval is reduced about 25% compared to the baseline. Also, water demand in climate change interval will increase, namely volume of water demand for agricultural, drinking and industrial, and environmental in climate change interval is expected to increase by 20%. The simulation results of the water evaluation and planning (WEAP) model is used to determine EIs of multi-purpose reservoir system. Next, three scenarios of water supply for climate change interval are introduced to WEAP model, keeping variable of parameter related to water demand volume (based on different percentages of supply) and keeping constant of the parameter related to the volume of inflow to the reservoir. Results show that system EIs in climate change interval will have a disadvantage compared to the baseline. So that, reliability, vulnerability, resiliency and flexibility indexes in climate change interval based on 100% of water supply compared to the baseline will decrease 18%, increase 150%, decrease 33%, and decrease 47%, respectively. These indexes based on 85% of supply compared to the baseline will decrease 12%, increase 75%, decrease 30%, and decrease 39%, respectively. Also, those based on 70% of supply compared to the baseline will decrease 1%, will be without change, decrease 18%, and decrease 18%, respectively. Changes in indexes in future interval indicate the need to manage water resource development projects in the basin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.