Abstract

A major inland alkalinity lake in Northeast China, the Chagan Lake, was studied for the changes of its water qualities over the past three decades. Water quality data, including total nitrogen (TN), total phosphorus (TP), pH, dissolved oxygen (DO), and fluoride (F-), were analyzed to derive key indices for guiding water quality management. Our study found that the Chagan Lake had an average trophic state index (TSI) ranging 50 to 70; the average TSI for TP ranging between 70 and 80, and the average TSI for TN being 50. Over the past three decades, the TSI values generally trended lower, but there was a slight uptrend from 2012 onwards. Seasonal variations in the concentrations of TN and TP were identified. The TSI values in September were higher than those in May, while the values of un-ionized ammonia (UIA) during rainy seasons were higher than those during dry seasons. The average values of alkalinity and F- in the lake water exceeded the upper limits set in the Chinese water quality standards, i.e., 20 mg/L and 1 mg/L, respectively. It was defined that the evolution of lake water quality proceeded in four consecutive periods, namely natural, deterioration, improvement, and risk period; the improvement period benefitted from a historical water conservation project. Our study concluded that the amount of irrigation discharge into the Chagan must be monitored, and controlled, in order to sustain the critical ecological functions currently provided by the Chagan Lake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call