Abstract

An ambulatory monitoring system is developed for the estimation of spatio-temporal gait parameters. The inertial measurement unit embedded in the system is composed of one biaxial accelerometer and one rate gyroscope, and it reconstructs the sagittal trajectory of a sensed point on the instep of the foot. A gait phase segmentation procedure is devised to determine temporal gait parameters, including stride time and relative stance; the procedure allows to define the time intervals needed for carrying an efficient implementation of the strapdown integration, which allows to estimate stride length, walking speed, and incline. The measurement accuracy of walking speed and inclines assessments is evaluated by experiments carried on adult healthy subjects walking on a motorized treadmill. Root-mean-square errors less than 0.18 km/h (speed) and 1.52% (incline) are obtained for tested speeds and inclines varying in the intervals [3, 6] km/h and [-5, + 15]%, respectively. Based on the results of these experiments, it is concluded that foot inertial sensing is a promising tool for the reliable identification of subsequent gait cycles and the accurate assessment of walking speed and incline.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.