Abstract

Radiometric performance of satellite instruments needs to be regularly monitored to determine if there is any drift in the instrument response over time despite the calibration with the best effort. If a drift occurs, it needs to be characterized in order to keep the radiometric accuracy and stability well within the specification. Instrument gain change over time can be validated independently using many techniques such as using stable earth targets (desert, ocean, snow sites etc), inter-comparison with other well calibrated radiometers (using SNO, SNO-x), deep convective clouds (DCC), lunar observations or other methods. This study focus on using vicarious calibration sites for the assessment of radiometric performance of Suomi National Polar-Orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) reflective solar bands. The calibration stability is primarily analyzed by developing the top-of-atmosphere (TOA) reflectance time series over these sites. In addition, the radiometric bias relative to AQUA MODIS is estimated over these calibration sites and analyzed. The radiometric bias is quantified in terms of observed and spectral bias. The spectral characterization and bias analysis will be performed using hyperspectral measurements and radiative transfer models such as MODTRAN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call