Abstract

Tree-induced cooling benefits are associated with various factors, such as canopy morphology, surface cover, and environmental configuration. However, limited studies have analyzed the sensitivity of tree-induced cooling effects to the combination of such factors. Most studies have focused on 1.5-m cooling performance, and few studies on the variability of the under-tree vertical cooling performance. Therefore, this study aims to investigate the vertical cooling performance of different combinations of trees and surface covers. The study was completed in Chongqing, China, with field experiments capturing vertical air temperature and wind speed at 0.5, 1.0, 1.5, 2.0 and 2.5 m under two typical combinations of “tree + grass” (ComA) and “tree + shrubs” (ComB), and capturing 1.5 m microclimatic environments of a control group with hard pavement without tree shade (REF). The results show that at an average ambient temperature of 33 °C, the maximum air-cooling temperatures for ComA and ComB were 2.46 °C and 1.78 °C, respectively. An increase in the ambient temperature corresponded to a decrease in the cooling effect difference between ComA and ComB. ComA had a maximum vertical temperature difference of 1.01 °C between H1.5m and H2.0m. Between H2.5m and H2.0m, the maximum vertical temperature difference for ComB was 1.64 °C. This study explored the changing patterns of under-tree vertical temperatures under different tree and surface cover combinations, conducive to clarifying the key elements affecting tree cooling performance. The results have implications for accurate thermal comfort assessments and provide a theoretical basis for fine-tuning the design of under-tree spaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call