Abstract

Assessment of various low-Re two-equation turbulence models in transonic flow with shock-boundary layer interaction and separation, is presented. The study includes seven different versions of the k- ϵ model, as well as the k- ω and k- R models. The models are implemented in conjunction with a characteristics-based scheme and an implicit unfactored method. The implicit unfactored solution of the fluid flow and turbulence transport equations is obtained by a Newton-type method which includes point-by-point Gauss-Seidel relaxation for the inversion of the system of equations. The accuracy and efficiency of the models is assessed for the transonic flow over an axisymmetric bump geometry. The differences in the numerical results between various models are mainly presented in the kinetic energy and turbulent shear-stress, especially in the separated flow region. The study also reveals that the number of iterations required for steady state solution depends strongly on the model used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.