Abstract

This study compared the hepatic glucuronidation of Picroside II in different species and characterized the glucuronidation activities of human intestinal microsomes (HIMs) and recombinant human UDP-glucuronosyltransferases (UGTs) for Picroside II.The rank order of hepatic microsomal glucuronidation activity of Picroside II was rat > mouse > human > dog. The intrinsic clearance of Picroside II hepatic glucuronidation in rat, mouse and dog was about 10.6-, 6.0- and 2.3-fold of that in human, respectively.Among the 12 recombinant human UGTs, UGT1A7, UGT1A8, UGT1A9 and UGT1A10 catalyzed the glucuronidation. UGT1A10, which are expressed in extrahepatic tissues, showed the highest activity of Picroside II glucuronidation (Km = 45.1 μM, Vmax = 831.9 pmol/min/mg protein). UGT1A9 played a primary role in glucuronidation in human liver microsomes (HLM; Km = 81.3 μM, Vmax = 242.2 pmol/min/mg protein). In addition, both mycophenolic acid (substrate of UGT1A9) and emodin (substrate of UGT1A8 and UGT1A10) could inhibit the glucuronidation of Picroside II with the half maximal inhibitory concentration (IC50) values of 173.6 and 76.2 μM, respectively.Enzyme kinetics was also performed in HIMs. The Km value of Picroside II glucuronidation was close to that in recombinant human UGT1A10 (Km = 58.6 μM, Vmax = 721.4 pmol/min/mg protein). The intrinsic clearance was 5.4-fold of HLMs. Intestinal UGT enzymes play an important role in Picroside II glucuronidation in human.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call