Abstract

In clinical trials, there always is the possibility to use data-driven adaptation at the end of a study. There prevails, however, concern on whether the type I error rate of the trial could be inflated with such design, thus, necessitating multiplicity adjustment. In this project, a simulation experiment was set up to assess type I error rate inflation associated with switching dose group as a function of dropout rate at the end of the study, where the primary analysis is in terms of a longitudinal outcome. This simulation is inspired by a clinical trial in Alzheimer’s disease. The type I error rate was assessed under a number of scenarios, in terms of differing correlations between efficacy and tolerance, different missingness mechanisms, and different probabilities of switching. A collection of parameter values was used to assess sensitivity of the analysis. Results from ignorable likelihood analysis show that the type I error rate with and without switching was approximately the posited error rate for the various scenarios. Under last observation carried forward (LOCF), the type I error rate blew up both with and without switching. The type I error inflation is clearly connected to the criterion used for switching. While in general switching, in a way related to the primary endpoint, may impact the type I error, this was not the case for most scenarios in the longitudinal Alzheimer trial setting under consideration, where patients are expected to worsen over time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call