Abstract

BackgroundMonitoring seasonal influenza epidemics is the corner stone to epidemiological surveillance of acute respiratory virus infections worldwide.This work aims to compare two sentinel surveillance systems within the Daily Acute Respiratory Infection Information System of Catalonia (PIDIRAC), the primary care ILI and Influenza confirmed samples from primary care (PIDIRAC-ILI and PIDIRAC-FLU) and the severe hospitalized laboratory confirmed influenza system (SHLCI), in regard to how they behave in the forecasting of epidemic onset and severity allowing for healthcare preparedness.MethodsEpidemiological study carried out during seven influenza seasons (2010–2017) in Catalonia, with data from influenza sentinel surveillance of primary care physicians reporting ILI along with laboratory confirmation of influenza from systematic sampling of ILI cases and 12 hospitals that provided data on severe hospitalized cases with laboratory-confirmed influenza (SHLCI-FLU). Epidemic thresholds for ILI and SHLCI-FLU (overall) as well as influenza A (SHLCI-FLUA) and influenza B (SHLCI-FLUB) incidence rates were assessed by the Moving Epidemics Method.ResultsEpidemic thresholds for primary care sentinel surveillance influenza-like illness (PIDIRAC-ILI) incidence rates ranged from 83.65 to 503.92 per 100.000 h. Paired incidence rate curves for SHLCI –FLU / PIDIRAC-ILI and SHLCI–FLUA/ PIDIRAC-FLUA showed best correlation index’ (0.805 and 0.724 respectively). Assessing delay in reaching epidemic level, PIDIRAC-ILI source forecasts an average of 1.6 weeks before the rest of sources paired. Differences are higher when SHLCI cases are paired to PIDIRAC-ILI and PIDIRAC-FLUB although statistical significance was observed only for SHLCI-FLU/PIDIRAC-ILI (p-value Wilcoxon test = 0.039).ConclusionsThe combined ILI and confirmed influenza from primary care along with the severe hospitalized laboratory confirmed influenza data from PIDIRAC sentinel surveillance system provides timely and accurate syndromic and virological surveillance of influenza from the community level to hospitalization of severe cases.

Highlights

  • Monitoring seasonal influenza epidemics is the corner stone to epidemiological surveillance of acute respiratory virus infections worldwide

  • In most developed countries a network of sentinel physicians report cases attended for influenza-like illness (ILI), which is used as a proxy to estimate influenza virus circulation, and on the other hand collect samples for virological confirmation, identification of causative virus and describe predominant circulating type and subtype of influenza virus [3]

  • Epidemic intensity reached moderate threshold levels for ILI incidence rates and influenza virus isolate incidence in all epidemic seasons except for the 2010–2011 post-pandemic season, when the duration of the epidemic was longer in time but of lower intensity

Read more

Summary

Introduction

Monitoring seasonal influenza epidemics is the corner stone to epidemiological surveillance of acute respiratory virus infections worldwide. This work aims to compare two sentinel surveillance systems within the Daily Acute Respiratory Infection Information System of Catalonia (PIDIRAC), the primary care ILI and Influenza confirmed samples from primary care (PIDIRAC-ILI and PIDIRAC-FLU) and the severe hospitalized laboratory confirmed influenza system (SHLCI), in regard to how they behave in the forecasting of epidemic onset and severity allowing for healthcare preparedness. Acute respiratory infection caused by influenza virus ranges from mild to severe and can even cause death in at risk population such as the elderly and young infants. Annual epidemics are estimated to result in about 3 to 5 million cases of severe illness, and about 250,000 to 500,000 deaths worldwide. In most developed countries a network of sentinel physicians report cases attended for influenza-like illness (ILI), which is used as a proxy to estimate influenza virus circulation, and on the other hand collect samples for virological confirmation, identification of causative virus and describe predominant circulating type and subtype of influenza virus [3]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call