Abstract

Increased knowledge of the physiological basis behind the signal enhancement in tumors during dynamic contrast-enhanced magnetic resonance (MR) imaging may be useful in development of predictive assays based on this technique. In the present work, the relative signal intensity (RSI) increase in gadopentetate dimeglumine (Gd-DTPA)-enhanced MR images of patients with cervical carcinoma was related to tumor perfusion, vascular density, cell density, and oxygen tension (pO(2)). The patients were subjected to MR imaging before the start of treatment (N = 12) and after two weeks of radiotherapy (N = 8). Perfusion was determined from the kinetics of contrast agent in tumors and arteries, vascular density and cell density were determined from tumor biopsies, and pO(2) was determined by polarographic needle electrodes. The maximal RSI was correlated to perfusion (P = 0.002) and cell density (P = 0.004), but was not related to vascular density. There was also a correlation between pO(2) and perfusion (P < 0.001). Moreover, pO(2) tended to be correlated to cell density (P = 0.1), but was not related to vascular density. There was a significant correlation between RSI and pO(2), regardless of whether the median pO(2) (P < 0.001) or the fraction of pO(2) readings below 2.5 mmHg (P < 0.001), 5 mmHg (P < 0.0001), or 10 mmHg (P < 0.001) was considered. Our results suggest that the Gd-DTPA-induced signal enhancement in MR images of cervical tumors is influenced by both perfusion and cell density. These parameters are also of major importance for tumor oxygenation, leading to a correlation between signal enhancement and oxygenation. Dynamic contrast-enhanced MR imaging may therefore possibly be useful in prediction of treatment outcome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call