Abstract

Angiogenesis is an important factor for further tumor growth and thus could be an attractive therapeutic target. Optical imaging can provide a non-invasive way to measure the permeability of tumor blood vessels and assess the tumor vasculature. We have developed a dual-channel near-infrared fluorescence system for simultaneous measurement of the pharmacokinetics of tumorous and normal tissues with exogenous contrast agents. This frequency-domain system consists of the light source (780 nm laser diode), fiber optics, interference filter (830 nm) and the detector (PMT). The fluorescent contrast agent used in this study is Indocyanine Green (ICG), and the normal dosage is 100 &mu;l at a concentration of 5 &mu;M. <i>In vivo </i>animal study is performed on the K1735 melanoma-bearing mouse. The fluorescence signals both tumorous and normal tissues after the bolus injection of ICG through the tail vein are continuously recorded as a function of time. The data is fitted by a double-exponential model to reveal the wash-in and wash-out parameters of different tissues. We observed an elongated wash-out from the tumor compared with normal tissue (leg). The effect of radiation therapy on the tumor vasculature is also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.