Abstract

Many applications in the life science and food industries require (semi-)crystalline oil-in-water (O/W) dispersions. Unfortunately, high supercooling and, thus, low temperatures are often needed to induce the crystallization of droplets. As low molecular weight emulsifiers (LMWEs) are able to act as nucleation templates, they might help to decrease the required level of supercooling. Furthermore, proteins and LMWEs are frequently co-formulated to improve the colloidal stability of emulsions and dispersions. Hence, choosing a suitable protein and LMWE mixture would allow for achieving specific product properties for controlling the solid fat content (SFC) and take advantage of the stabilization mechanisms of both emulsifiers. Therefore, this study focuses on the impact of the co-existence of β-lactoglobulin (β-lg) and phospholipids (PLs) LMWEs on the SFC of triglyceride (TAG) droplets at isothermal conditions using a thermo-optical method. When β-lg alone was used as an emulsifier, a maximum SFC of 80% was obtained at a supercooling of 32 K and 42 K for trilaurin and tripalmitin, respectively. The SFC could be increased to 100% using a PL containing saturated fatty acids (FAs) and a small hydrophilic headgroup. At the same supercooling, a PL containing saturated FAs and a large hydrophilic headgroup led to a maximum SFC of 80%. At lower supercooling, the SFC was reduced with this PL by 10% compared to β-lg alone. In addition, when the PLs had more time to adsorb and rearrange with ß-lg at the interface, even lower SFCs were observed compared to cooling directly after emulsification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call