Abstract

Summary Solute transport in rivers is controlled by surface flow hydrodynamics and by transient storage in dead zones, pockets of vegetation and hyporheic sediments where mass exchange and retention are governed by complex mechanisms. The physics of these processes are generally investigated by optimization of transient storage models (TSMs) to experimental data often yielding inconsistent and equifinal parameter sets. Uncertainty on parameters estimation is found to depend not only on the rates of exchange between the stream and storage zones, the stream-water velocity and the stream reach length according to the experimental Damkohler number (DaI), but also on the relative significance between transient storage and longitudinal dispersion on breakthrough curves (BTCs). An optimization strategy was developed and applied to an experimental dataset obtained from tracer tests in a small lowland river, analyzing BTCs generated through tracer injections under different conditions. The method supplies a tool to estimate model parameters from observed data through the analysis of the relative parameter significance. To analyze model performance a double compartment TSM was optimized by a regular fit procedure based on simple root mean square error minimization and by a fit based on a relative significance analysis of mechanism signatures. As a result consistent longitudinal dispersion and transient storage parameters were obtained when the signature targeted optimization was used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call