Abstract

Background and ObjectiveThis study aims to determine the accuracy of patient specific 3D printed models in capturing pathological anatomical characteristics derived from CT angiography (CTA) in children with anomalous aortic origin of a coronary artery (AAOCA). Methods & MaterialsFollowing institutional regulatory approval, a standardized protocol for CTA of AAOCA was utilized for imaging. Blood volume of the aorta and coronaries were segmented from the DICOM images. A total of 10 models from 8 AAOCA patients were created, including 2 post-operative models. Mechanical properties of Agilus30 a flexible photopolymer coated with a thin layer of parylene, polyurethane (PU) and silicone and native aortic tissue from a postmortem specimen were compared. AAOCA models with wall thicknesses of 2mm aorta and 1.5mm coronaries were 3D printed in Agilus30 and coated with PU. CT of the printed models was performed, and 3D virtual models were generated. Transfer of anatomical characteristics and geometric accuracy were compared between the patient model virtual models. ResultsDynamic modulus of Agilus30 at 2mm thickness was found to be close to native aortic tissue. Structured reporting of anatomical characteristics by imaging experts showed good concordance between patient and model CTA Comparative patient and virtual model measurements showed Pearson's correlation (r) of 0.9959 for aorta (n=70) and 0.9538 for coronaries (n=60) linear, and 0.9949 for aorta (n=30) and 0.9538 for coronaries (n=30) cross-sectional, dimensions. Surface contour map mean difference was 0.08 ± 0.29mm. ConclusionsGeometrically accurate AAOCA models preserving morphological characteristics, essential for risk stratification and decision-making, can be 3D printed from a patient's CTA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call