Abstract

Ethiprole is effective against a wide range of insects and has been used throughout the world. In this work, the toxicity, bioaccumulation and elimination of ethiprole and its main metabolites (ethiprole sulfone (M1), ethiprole sulfide (M2), ethiprole amide (M3), ethiprole sulfone amide (M4) and desethylsulfinyl ethiprole (M5)) in zebrafish Danio rerio were investigated at enantiomeric level. Rac-ethiprole showed high toxicity (96 h LC50 = 708 μg L−1) and M2 was six times more toxic than ethiprole (111 μg L−1). Enantioselective toxicity was observed, with the S-ethiprole (924 μg L−1) being more toxic than R-ethiprole (2195 μg·L−1). Rac-ethiprole and M2 could induce oxidative stress in the liver of adult zebrafish and developmental toxicity in zebrafish embryos. Zebrafish were exposed to 100 μg L−1 rac-/R-/S-ethiprole and the bioaccumulation was monitored during a 21 d period followed by a 7 d metabolism. The bioconcentration factor (BCF) of rac-ethiprole was 17, and the half-lives of rac-ethiprole and metabolites varied between 0.44 and 2.99 d. R-ethiprole was preferentially accumulated and metabolized in zebrafish. Besides, the metabolic pathways of R- and S-ethiprole were found to be different. This study indicated assessment of metabolites and enantioselectivity should be taken into consideration in evaluating environmental risks of ethiprole.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call