Abstract

SummaryVermicomposts from the wine and distillery industry containing spent grape marc (V1), biosolid vinasse (V2) and alperujo (V3) from the olive‐oil industry were investigated as organic amendments to a sandy and a clay soil with low organic carbon (OC) contents (≤1%). The sorption‐desorption process was studied in batch experiments using diuron as a non‐ionic herbicide model. The effect of soil and vermicompost characteristics, the solution's ionic strength and incubation time of amended soils on the sorption process was studied. The addition of vermicompost changed soil properties and enhanced sorption capacity by two‐ to four‐fold. The Koc variability showed that exogenous OC composition influenced diuron sorption. Vermicompost V1, which had the largest OC and lignin content, recorded the largest sorption increment. Vermicompost V3, which had the greatest dissolved organic carbon content and a high degree of humification, made the smallest contribution to sorption. Sorption was also dependent on extraneous calcium in the solution. The incubation of amended soils reduced diuron sorption efficiency except with V3. Pyrolysis‐gas chromatography (Py‐GC) analysis was a useful tool to characterize the vermicomposts and to understand the variation of diuron sorption constants after vermicompost incubation. This research encourages the use of vermicompost from agro‐industrial wastes as a sustainable means to minimize the side effects of neutral herbicides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.