Abstract

The Gas Turbine Modular Helium Reactor (GT-MHR) uses two compression stages to compress the helium and a pre-cooler and an intercooler to reduce the compressors inlet temperature, that dissipate around 308.36 MWth at the design operational conditions. This dissipated thermal energy can be used as an energy source to produce hydrogen. An energy analysis is conducted for a proposed system that includes GT-MHR combined with Organic Rankine Cycle (GT-MHR/ORC) and a Proton Exchange Membrane (PEM) electrolyzer (GT-MHR/ORC-PEM) for hydrogen production. The optimum operating parameters values of the new cycle are obtained using the Engineering Equation Solver (EES) software. Thermal efficiency has been improved from 48.6% for the simple GT-MHR cycle to 49.8% for the new combined (GT-MHR/ORC-PEM) cycle including hydrogen production at a rate of 0.0644 kg/s at the same operating conditions. However, the thermal efficiency for the combined GT-MHR/ORC was higher and reaches 50.68%. Moreover, a parametric study is carried out over a wide range of some operating conditions such as turbine inlet temperature, Compressor pressure ratio and compressor inlet temperature to investigate their effect on the new cycle performance. Results revealed that increasing the low-pressure compressor inlet temperature increases the amount of hydrogen produced while decreasing thermal efficiencies for the three cycles. Furthermore, increasing compressor pressure ratio reduces the mass flow rate of hydrogen produced util it reaches a minimum value then it starts to increase slightly, on the contrary, an opposite relationship is observed between thermal efficiencies and compressor pressure ratio. Moreover, at low compressor pressure ratio, the rate of hydrogen produced increases with increasing turbine inlet temperature; however, it decreases by increasing the turbine inlet temperature at high compressor pressure ratio. Nevertheless, a direct correlation is noticed between thermal efficiencies and turbine inlet temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call