Abstract

Atherosclerosis (AS) is a common disease seriously detrimental to human health. AS is a chronic progressive disease related to inflammatory reactions. The present study aimed to characterize and evaluate the effects of adipose tissue stem cells (ADSCs) in high-fat diet-induced atherosclerosis in a rat model. The present study comprises thirty-six rats and they were divided into three groups: the control group, the high-fat diet (HFD) group; which received a high-fat diet, and the high-fat diet + stem cells (HFD+SC) group; which was fed with a high-fat diet along with the administration of intravenous ADSCs. Food was given to the animals for 20 weeks to establish dyslipidemia models. After 20 weeks, animals were sacrificed by cervical dislocation; blood was collected to measure total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL); aortae were collected to detect morphologic changes. Rats of the HFD group showed a significant increase in body weight (B.Wt), altered lipid profile increased expression of inducible nitric oxide synthase (iNOS), and decreased expression of endothelial nitric oxide synthase (eNOS). However, in HFD+SC there was a significant decrease in body weight gain and an improvement in lipid profile. Histopathological and ultrastructural variations observed in the aorta of the HFD group when treated with ADSCs showed preserved normal histological architecture and reduced atherosclerosis compared with the HFD group. This was evidenced by laboratory, histological, immunohistochemical, and morphometric studies. Thus, ADSCs reduced TC, TG, and LDL, reduced the expression of iNOS, and increased the expression of eNOS. The high-fat diet was likely to cause damage to the wall of blood vessels. Systemically transplanted ADSCs could home to the aorta, and further protect the aorta from HFD-induced damage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.