Abstract

The fully coupled WRF/Chem (Weather Research and Forecasting/Chemistry) model is used to simulate air quality over coastal areas of the Sea of Japan. The anthropogenic surface emissions database used as input for this model was based primarily on global hourly emissions data (dust, sea salt, and biomass burning), RETRO (REanalysis of the TROpospheric chemical composition), GEIA (Global Emissions Inventory Activity), and POET (Precursors of Ozone and their Effects in the Troposphere). Climatologic concentrations of particulate matter derived from the Regional Acid Deposition Model (RADM2), chemical mechanism, and the Secondary Organic Aerosol Model (MADE/SORGAM) with aqueous reactions were used to deduce the corresponding aerosol fluxes for input to the WRF/Chem model. The model was first integrated continuously over 48 hours, starting from 00:00 UTC on 14 March 2008, to evaluate ozone concentrations and other precursor pollutants. WPS meteorological data were used for the WRF/Chem model simulation in this study. Despite the low resolution of global emissions and the weak density of the local point emissions, it was found that the WRF/Chem model simulates the diurnal variation of the chemical species concentrations over the coastal areas of the Sea of Japan quite well. The Air Quality Management Division of the Ministry of the Environment in Japan selected the maximum level of the air quality standard for ozone, which is 60 ppb. In this study, the atmospheric concentrations of ozone over the coastal area of the Sea of Japan were calculated to be 30–55 ppb during the simulation period, which was lower than the Japanese air quality standard for ozone.

Highlights

  • At present, more than 60 million people are added to cities each year worldwide, and approximately325 cities have a population of more than one million, compared to 270 such cities in 1990 [1].In recent decades, air quality has deteriorated remarkably in the large cities of developing countries.The export of air pollutants from urban to regional and global environments is of major concern because of wide-ranging potential consequences for human health and for cultivated and natural ecosystems, visibility degradation, weather modification, radiative forcing, and changes in tropospheric oxidation capacity

  • The main pollutants emitted into the atmosphere in urban areas are sulfur oxides (SOx), nitrogen oxides (NOx), carbon monoxide (CO), volatile organic compounds (VOCs), metal oxides, and particulate matter (PM/aerosols), mostly consisting of black carbon, sulfates, nitrates, and organic matter

  • The Weather Research and Forecast (WRF)/Chem model was used to simulate the spatial and temporal variations of surface ozone and its precursor pollutants NOx over Coastal Areas of the Sea of Japan

Read more

Summary

Introduction

More than 60 million people are added to cities each year worldwide, and approximately325 cities have a population of more than one million, compared to 270 such cities in 1990 [1].In recent decades, air quality has deteriorated remarkably in the large cities of developing countries.The export of air pollutants from urban to regional and global environments is of major concern because of wide-ranging potential consequences for human health and for cultivated and natural ecosystems, visibility degradation, weather modification, radiative forcing, and changes in tropospheric oxidation (self-cleaning) capacity. More than 60 million people are added to cities each year worldwide, and approximately. Air quality has deteriorated remarkably in the large cities of developing countries. The export of air pollutants from urban to regional and global environments is of major concern because of wide-ranging potential consequences for human health and for cultivated and natural ecosystems, visibility degradation, weather modification, radiative forcing, and changes in tropospheric oxidation (self-cleaning) capacity. Increasing urbanization will be a major environmental driving force in the 21st century, affecting air quality on all scales (e.g., local, regional, and global) [1]. The oxidization of CO, VOCs, and NOx produces ozone in the planetary boundary layer (PBL), which has an important impact on human health in urban areas.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.