Abstract
Polycrystalline U3O7 powder was synthesized by oxidation of UO2 powder under controlled conditions using in situ thermal analysis, and by heat treatment in a tubular furnace. The O/U ratio of the U3O7 phase was measured as 2.34 ± 0.01. The crystal structure was assessed from X-ray diffraction (XRD) and selected-area electron diffraction (SAED) data. Similar to U4O9-ε (more precisely U64O143), U3O7 exhibits a long-range ordered structure, which is closely related to the fluorite-type arrangement of UO2. Cations remain arranged identical to that in the fluorite structure, and excess anions form distorted cuboctahedral oxygen clusters, which periodically replace the fluorite anion arrangement. The structure can be described in an expanded unit cell containing 15 fluorite-like subcells (U15O35), and spanned by basis vectors A = ap - 2bp, B = -2ap + bp, and C = 3cp (lattice parameters of the subcell are ap = bp = 538.00 ± 0.02 pm and cp = 554.90 ± 0.02 pm; cp/ap = 1.031). The arrangement of cuboctahedra in U3O7 results in a layered structure, which is different from the well-known U4O9-ε crystal structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.