Abstract

Urban rail transit (URT) in metropolitan areas consumes huge energy. Energy-efficient timetabling (EET) of URT is an essential measurement of URT management and technologies toward carbon neutralization initiatives. However, the majority EET studies focus on single URT lines ignoring passenger transfer and path choice in the entire URT network. As passenger path choice and timetabling are interdependent in a URT network, the ignorance of passenger transfers potentially results in irrelevant energy efficiency of a URT network. This paper proposes a bi-objective EET model incorporating the minimization of passenger transfer times as an objective in addition to energy efficiency. The timetabling objectives and constraints are linearized, and the bi-objective is transformed into a single objective by a linear weighting method. Utilizing the passenger demand and speed profile data of URT in the City of Xi’an (China), a case study is performed to demonstrate the effectiveness of the proposed EET model. The numerical results show that an optimized timetable solution can reduce 25.1% energy consumption and save 3.3% passenger transfer time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call