Abstract

Whole-brain computed tomography perfusion (CTP) data sets generated by tracer delay-insensitive singular value decomposition plus (SVD+) and standard singular value decomposition (sSVD) deconvolution algorithms were evaluated to quantify relatedness and discrepancies in CTP results. Twenty females with symmetrical hemispheric CTP maps indicative of brain tissue without apparent abnormalities were studied. Tissue-specific CTP values were analyzed. Standard SVD values were higher than SVD+ for cerebral blood flow. Other CTP values had minimal differences across brain regions. All simple linear regression models were statistically significant (P < 0.05) except for cerebral blood flow in white matter (P = 0.06). Cerebral blood volume had a good model fit, and mean transit time, a poor fit. Corresponding fitted CTP values for sSVD and SVD+ based on regression equations for brain-tissue types are presented. Additional research is required to compare SVD+ and sSVD in disease states when significant hemodynamic brain alterations are present.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.