Abstract
Mechlorethamine (HN2) is an alkylating agent and sulfur mustard gas mimetic which is also used in anticancer therapy. HN2 is associated with skin inflammation and blistering which can lead to secondary infections. The purpose of the present study was to investigate the time-dependent dermatotoxicity of HN2 using the mouse ear vesicant model (MEVM). To this end, our operational definition of dermatotoxicity included tissue responses to HN2 consistent with an increase in the wet weights of mouse ear punch biopsies, an increase in the morphometric thickness of H&E stained ear sections and histopathologic observations including tissue edema, inflammatory cell infiltration and vesication. The ears of male Swiss Webster mice were topically exposed to a single dose of HN2 (0.5 μmol/ear) or DMSO vehicle (5 μl/ear) or left untreated (naive). Mice were then euthanized at 15 min, 1, 2, 4, 8 or 24 hr following HN2 exposure. Compared to control ears, mouse ears exposed to HN2 at all time points showed an increase in wet weights, morphometric thickness, edema, inflammatory cell infiltration and signs of vesication. The incidence in tissue vesication sharply increased between 4 and 8 hr after exposure, revealing that tissue vesication is well established by 8 hr and remains elevated at 24 hr after exposure. It is noteworthy that, compared to control ears, mouse ears treated with DMSO vehicle alone also exhibited an increase in wet weights and morphometric thickness at 15 min, 1, 2 and 4 hr following treatment; however, these vehicle effects begin to subside after 4 hr. The results obtained here using the MEVM provide a more holistic understanding of the kinetics of vesication, and indicate that time points earlier than 24 hr may prove useful not only for investigating the complex mechanisms involved in vesication but also for assessing the effects of vesicant countermeasures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.