Abstract

The purpose of this study was to compare low frequency ultrasonic guided wave measurements with established ultrasound and bone density measurements in terms of their ability to characterize the tibia in pubertal girls. Subjects were 12-14-year-old girls ( n=106) who were participating in a calcium and vitamin D intervention study. A prototype low frequency pulse transmission device consisting of a uniaxial scanning mechanism and low frequency transducers orientated perpendicularly to the limb was used to measure two ultrasound velocities in the tibia. The first velocity, V1, was that of the first arriving signal, similar to that measured by existing commercial tibial ultrasound devices. The second velocity, V2, was that of a slower wave propagating at 1,500-2,000 m/s, which has been shown elsewhere to be consistent with the lowest order antisymmetric guided mode in the bone. In addition, commercial ultrasound devices (Omnisense, Sunlight Ltd.; QUS-2, Quidel Corp.) were used to measure the speed of sound (SOS) in the tibia and the radius and attenuation (BUA) in the calcaneus. Cortical bone cross-sectional area (CSA), mineral density (BMD) and cortical thickness (cTh) of the tibia were measured using pQCT, site-matched to the ultrasound measurements. Both V1 and V2 correlated significantly with cortical BMD and with cTh and CSA. On the other hand, tibial SOS correlated with BMD, but not with cTh and CSA. These results indicate that the prototype device using guided waves captures aspects of tibial cortical bone geometry in addition to bone density, thereby potentially offering increased diagnostic information compared to existing tibial ultrasound devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.