Abstract

In this study, we examined the sources and temporal variability of 16 polycyclic aromatic hydrocarbons (PAHs) found in fine particulate matter (PM2.5) in a typical industrial city in northern China. We also evaluated the incremental lifetime cancer risk (ILCR) from the inhalation of these PAHs. Atmospheric PM2.5 samples were collected for 7 consecutive days each month from 2014 to 2019, and the 16 PAHs were measured using multiplex gas chromatography-tandem mass spectrometry. The carcinogenic risk of PAH exposure was assessed using the inhalation unit risk (IUR) and cancer slope factor (CSF) methods. The annual average concentrations of PM2.5 for each year from 2014 to 2019 were 102.87±55.25, 86.92±60.43, 69.17±37.74, 58.20±59.15, 56.01±34.52, and 52.54±58.15 µg m-3, and the annual average ΣPAH concentrations were 56.03±81.09, 47.99±79.30, 40.41±57.31, 33.57±51.79, 43.23±74.80, and 25.20±50.91 ng m-3, respectively. Source identification, using diagnostic ratio analysis, indicated that the major PAH sources were coal/biomass combustion, fuel combustion, and traffic emissions. A health risk assessment showed that the ILCR from PAH inhalation decreased throughout the study period and varied with age. The IUR and CSF methods both showed that the adult ILCR exceeded 1.0×10-6. These findings demonstrate the importance of addressing the carcinogenic risk of PM2.5-bound PAHs, particularly in adults.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call