Abstract

Determination of chemical pathways, sets of interlinked reactions, is a well-known method to study complex chemistries. In order to have a trustworthy and accurate method for analysis of chemical processes in complicated systems such as low-temperature plasmas, a used algorithm should keep conservation of necessary parameters during all steps of an analysis. In this research, the introduced algorithm by Lehmann (2004 J. Atmos. Chem. 47 45–78) is chosen as a candidate for studying tangled low-temperature plasma chemistry. As a first step, the ability of the algorithm to keep conservation of reactions rates and net production of species is assessed by designing some artificial examples. In that stage, ambiguous parts of the algorithm are clarified, and test cases are provided to verify implementation of the algorithm in any programming infrastructure. Then, the capability of the algorithm as a reduction method is investigated by applying a newly developed semi-automated method based on pathway analysis to two plasma chemistry examples, a – microwave induced plasma and a pulsed plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.