Abstract

The aim of the study described in this paper is to assess the effect of forces acting on the tube sheet during friction welding on the stress-strain state of the tube sheet.For this, we calculated the stresses and displacements arising in the tube sheet during friction welding. The calculations were carried out in the ANSYS (finite element analysis software package). To carry out the calculations, solid-state models of tube sheets with diameters of 400, 600, 800, 1000, 1200, 1400 mm and thicknesses of 30, 40, 50, 60, 70 mm were created. The diameter of the holes for the heat exchange tubes was chosen equal to 25 mm, the holes are placed on the vertices of an equilateral triangle with a step equal to 32 mm. Then, based on geometric models, grids of 8-node finite elements were created. The calculation model takes into account the symmetry of the geometric model and the character of loading relative to the YZ and XZ planes. The material used was steel with a Poisson's ratio of 0.3 and an elastic modulus of 2,11·105 MPa.As a result of the calculations, it was found that as a result of the action of force factors during friction welding, significant stresses and deformations arise in the tube sheet. The greatest values of deflection and stresses occur in the central sector of the tube sheet in the area of application of force. In this case, the zone of maximum stresses is significantly localized: they are concentrated around the central hole, and movements smoothly increase from the periphery to the center of the tube sheet.The value of this study is that it allowed to determine the need to use special equipment that increases the local stiffness of the tube sheet sector subjected to friction welding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.