Abstract

Olive pruning residues are a by-product that can be applied to soil or used for energy production in a circular economy model. Its benefits depend on the amount of pruning, which varies greatly within farms. This study aimed to investigate the spatial variability of shreddable olive pruning in a traditional olive grove in Córdoba (Spain) with an area of 15 ha and trees distanced 12.5 m from each other. To model the spatial variability of shreddable olive pruning, geostatistical methods of stochastic simulation were applied to three correlated variables measured on sampled trees: the crown projected area (n = 928 trees), the crown volume (n = 167) and the amount of shreddable pruning (n = 59). Pearson’s correlation between pairs of variables varied from 0.71 to 0.76. The amount of pruning showed great variability, ranging from 7.6 to 76 kg tree−1, with a mean value of 37 kg tree−1. Using exponential and spherical variogram models, the spatial continuity of the variables under study was established. Shreddable dry pruning weight values showed spatial autocorrelation up to 180 m. The spatial uncertainty of the estimation was obtained using sequential simulation algorithms. Stochastic simulation algorithms provided 150 possible images of the amount of shreddable pruning on the farm, using tree projected area and crown volume as secondary information. The interquartile range and 90% prediction interval were used as indicators of the uncertainty around the mean value. Uncertainty validation was performed using accuracy plots and the associated G-statistic. Results indicate with high confidence (i.e., low uncertainty) that shreddable dry pruning weight in the mid-western area of the farm will be much lower than the rest of the farm. In the same way, results show with high confidence that dry pruning weight will be much higher in a small area in the middle east of the farm. The values of the G-statistic ranged between 0.89 and 0.90 in the tests performed. The joint use of crown volume and projected areas is valuable in estimating the spatial variability of the amount of pruning. The study shows that the use of prediction intervals enables the evaluation of farm areas and informed management decisions with a low level of risk. The methodology proposed in this work can be extrapolated to other 3D crops without requiring modifications. On a larger scale, it can be useful for predicting optimal locations for biomass plants, areas with high potential as carbon sinks or areas requiring special soil protection measures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call