Abstract

Climate change and anthropogenic activity in the Republic of Buryatia aggravate the processes of desertification and land degradation. The territory of Buryatia was zoned according to the aridity index based on ENVIREM climate data with a high spatial resolution. Long-term changes in the vegetation cover in arid and humid zones are quantitatively assessed based on a combined study of the time series of the normalized-difference vegetation index (NDVI) with the Advanced Very High Radiation Radiometer (AVHRR), meteorological series of the NCEP/NCAR Reanalysis data set, and field studies. Maps of the spatial distribution of NDVI linear trends and precipitation for 1982–2015 (with the differentiation of the wet (1982–1999) and dry periods (2000–2015)) have been constructed. During the wet period, positive NDVI trends are observed for almost the entire republic, while the dry period is characterized by a significant increase in negative trends of the vegetation index. A positive correlation between the Selyaninov hydrothermal coefficient and NDVI is observed for intermountain steppe basins, while it is negative for forest landscapes. The dynamics of the NDVI for steppe vegetation is more dependent on precipitation, while the dynamics of the NDVI for forests is more significantly correlated with temperature. Reforestation, postpyrogenic succession, the bushing of fallow lands, and other factors determine the growth in the NDVI. Negative NDVI trends are characteristic of steppe ecosystems with low precipitation and forest ecosystems exposed to felling and fires.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call