Abstract

This study benchmarks the newly re-implemented single-reference excited-state methods, IP-EOM-CCSD, EA-EOM-CCSD, and STEOM-CCSD, in ORCA6.0, with a focus on open-shell systems. We compare STEOM against EOM-CCSD, CC3, and CCSDT across a range of systems, including small organic radicals, hydrated transition metal (TM) ions, and TM diatomic systems with both closed and open-shell configurations. For organic radicals, STEOM and EOM-CCSD show comparable performance, aligning closely with CC3 and CCSDT results. In the case of hydrated TM ions, IP-EOM closely matches DLPNO-CCSD results, while deviations from DLPNO-CCSD(T) are consistent. For open-shell TM systems, IP-EOM exhibits a blueshift relative to both the DLPNO-CCSD methods, while EA-EOM-CCSD shows better agreement. When comparing STEOM and CC3 to CCSDT, STEOM shows slightly larger deviations in closed-shell systems but shows excellent agreement in open-shell systems. Computational efficiency is also assessed, revealing a significant speedup in ORCA 6.0 compared to ORCA 5.0, with optimizations improving computation times. This study provides valuable insights into the performance and efficiency of STEOM in various chemical environments, highlighting its strengths and limitations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.