Abstract

Urban water supply headworks systems are usually designed to provide high security against drought. The best way to evaluate this security is to use Monte Carlo simulation which is computationally expensive. The advent of parallel computing technology in conjunction with genetic algorithms has made it practicable to optimize operation for drought security. Nonetheless, computation turnaround times remain long. This paper presents a simple heuristic called replicate compression to improve Monte Carlo efficiency. It exploits the well known concept of a critical period. In a high reliability system there should be few critical periods. Therefore, restricting simulation to such periods should bring about substantial savings in computational effort. It was found for problems where the objective function evaluation is only affected by what happens during critical periods, replicate compression provides an effective means for substantially reducing simulation effort. The case study involving a nine-reservoir urb...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.