Abstract

Erythrocyte cytosolic protein expression profiles of children with unexplained hemolytic anemia were compared with profiles of close relatives and controls by two-dimensional differential in-gel electrophoresis (2D-DIGE). The severity of anemia in the patients varied from compensated (i.e., no medical intervention required) to chronic transfusion dependence. Common characteristics of all patients included chronic elevation of reticulocyte count and a negative workup for anemia focusing on hemoglobinopathies, morphologic abnormalities that would suggest a membrane defect, immune-mediated red cell destruction, and evaluation of the most common red cell enzyme defects, glucose-6-phosphate dehydrogenase and pyruvate kinase deficiency. Based upon this initial workup and presentation during infancy or early childhood, four patients classified as hereditary nonspherocytic hemolytic anemia (HNSHA) of unknown etiology were selected for proteomic analysis. DIGE analysis of red cell cytosolic proteins clearly discriminated each anemic patient from both familial and unrelated controls, revealing both patient-specific and shared patterns of differential protein expression. Changes in expression pattern shared among the four patients were identified in several protein classes including chaperons, cytoskeletal and proteasome proteins. Elevated expression in patient samples of some proteins correlated with high reticulocyte count, likely identifying a subset of proteins that are normally lost during erythroid maturation, including proteins involved in mitochondrial metabolism and protein synthesis. Proteins identified with patient-specific decreased expression included components of the glutathione synthetic pathway, antioxidant pathways, and proteins involved in signal transduction and nucleotide metabolism. Among the more than 200 proteins identified in this study are 21 proteins not previously described as part of the erythrocyte proteome. These results demonstrate the feasibility of applying a global proteomic approach to aid characterization of red cells from patients with hereditary anemia of unknown cause, including the identification of differentially expressed proteins as potential candidates with a role in disease pathogenesis.

Highlights

  • Red blood cells (RBC), the most abundant cell type in the human body, are highly specialized structurally and functionally to supply oxygen to tissues via the circulatory system

  • Disruptions in redox balance and increased oxidative damage are characteristic of many RBC pathologies including hemoglobinopathies such as sickle cell anemia [4] and thalassemia [5], as well as enzyme defects such as glucose-6-phosphate dehydrogenase (G6PD) deficiency [6] and pyruvate kinase (PK) deficiency [7]

  • Routine evaluation of samples began with non-proteomic approaches including testing for unstable hemoglobin and evaluation of enzymatic activity for the most common causes of hereditary nonspherocytic hemolytic anemia (HNSHA) (G6PD, PK, and Hexokinase deficiency), if not previously reported in the patient’s record

Read more

Summary

Introduction

Red blood cells (RBC), the most abundant cell type in the human body, are highly specialized structurally and functionally to supply oxygen to tissues via the circulatory system. Reticulocytes circulate for a few days during which organelles including mitochondria, Golgi apparatus and the endoplasmic reticulum are lost [2], allowing mature RBC maximal flexibility to squeeze though narrow capillaries and providing room to pack the cell with hemoglobin, making up 90% of the dry weight of the cell [3]. Because of their extreme specialization, mature RBC have little capacity to repair and no ability to replace damaged proteins. Disruptions in redox balance and increased oxidative damage are characteristic of many RBC pathologies including hemoglobinopathies such as sickle cell anemia [4] and thalassemia [5], as well as enzyme defects such as glucose-6-phosphate dehydrogenase (G6PD) deficiency [6] and pyruvate kinase (PK) deficiency [7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call