Abstract

In liver fibrosis, a major morbid and mortal disease, oxidative stress motivation of hepatic stellate cells (HSCs)-into myofibroblasts terminated in collagen deposition remain the key pathophysiological deal. Serotonin (5-HT) through its HSCs-expressed receptors, especially 5-HT2A and 7, shows crucial events in fibrogenesis of chronic liver diseases. Molecular hepatic oxidative stress-fibrotic roles of 5-HT2A and 7 receptors antagonists (ketanserin and SB-269970 respectively) are still a challenging issue. Seven groups of adult male Wistar rats (n=10) were used. A carbon tetrachloride (CCl4) solution was injected intraperitoneally twice weekly for 6 weeks. On the 7th week, rats developed liver fibrosis were treated either by ketanserin (1mg/kg/day, ip) or SB-269970 (2mg/kg/day, ip) for 14days. Survival rates, and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in addition to hepatic malondialdehyde (MDA) and reduced glutathione (GSH) levels, superoxide dismutase (SOD) and catalase (CAT) activities, and transforming growth factor-beta1 (TGF-β1) and procollagen type I N-terminal propeptide (PINP) levels, beside the hepatic histopathological fibrotic changes, were evaluated. In CCl4-challenged rats, each therapeutic approach showed significant reductions in elevated serum ALT, and AST levels, hepatic MDA, TGF-β1, and PINP levels, and histopathological hepatic fibrotic scores as well as significant elevations in survival rates, reduced hepatic GSH levels, and SOD, and CAT activities. Remarkably, significant ameliorative measurements were observed in SB-269970 treated group. Blockade of 5-HT2A and 7 receptors each alone could be a future reliable therapeutic approach in liver fibrosis through a reduction in oxidative stress/TGF-β1-induced HSCs activation pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call