Abstract

Abstract: We aimed to examine the diagnostic performances of multilayer perceptron neural networks (MLPNNs) for predicting coronary artery disease and to compare them with different types of artificial neural network methods, namely recurrent neural networks (RNNs) and two statistical methods (quadratic discriminant analysis (QDA) and logistic regression (LR)). MLPNNs were trained with backpropagation, quick propagation, delta‐bar‐delta and extended delta‐bar‐delta algorithms as classifiers; the RNN was trained with the Levenberg–Marquardt algorithm; LR and QDA were used for predicting coronary artery disease. Coronary artery disease was classified with accuracy rates varying from 79.9% to 83.9% by MLPNNs. Even though MLPNNs achieved higher accuracy rates than the statistical methods, LR (73.2%) and QDA (58.4%), their performances were lower compared to the RNN (84.7%). Among the four different types of training algorithms that trained MLPNNs, quick propagation achieved the highest accuracy rate; however, it was lower than the RNN trained with the Levenberg–Marquardt algorithm. RNNs, which demonstrated 84.7% accuracy and 86.5% positive predictive rates, may be a helpful tool in medical decision making for diagnosis of coronary artery disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.