Abstract

Makkah region is one of the most flash flood-prone areas of Saudi Arabia due to terrain characteristics and the synoptic-scale weather conditions that intensify through interaction with the local topography causing high convective short-lived rainfall events, although these conditions are quite infrequent. Most of these events last for less than two hours. This study aims to assess the performance of five satellite precipitation products over a 1725 km2 sparsely gauged, arid basin. A fully distributed, physically based hydrologic model was forced by the five satellite precipitation products, and the evaluation included the hydrographs and runoff maps predicted by the model. Moreover, the propagation of the satellite rainfall errors into runoff predictions was quantified. Large variations and significant biases were found in satellites precipitation estimates compared to the available ground rainfall measurements. The Early IMERG product showed the best agreement with the reported total rainfall accumulations followed by Late IMERG while the other products significantly underestimated precipitation accumulations. Comparison with estimated runoff peaks showed that the Early IMERG product has the lowest errors in runoff peaks. Therefore, the hydrographs produced by the Early IMERG product were used as a reference to quantify the propagation of satellite precipitation errors into runoff predictions over the Makkah watershed. The results clearly indicated that both systematic and random rainfall errors were significantly amplified in runoff predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call